中考網(wǎng)
全國站
快捷導(dǎo)航 中考政策指南 2024熱門中考資訊 中考成績(jī)查詢 歷年中考分?jǐn)?shù)線 中考志愿填報(bào) 各地2019中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁
您現(xiàn)在的位置:中考 > 知識(shí)點(diǎn)庫 > 初中數(shù)學(xué)知識(shí)點(diǎn) > 軸對(duì)稱 > 正文

2023年初中數(shù)學(xué)軸對(duì)稱知識(shí)點(diǎn)及例題

來源:網(wǎng)絡(luò)資源 2023-02-01 20:51:01

中考真題

智能內(nèi)容

1.軸對(duì)稱的定

把一個(gè)圖形沿著某一條直線翻折,如果它能夠與另一個(gè)圖形重合,那么稱這兩個(gè)圖形關(guān)于這條直線對(duì)稱,也稱這兩個(gè)圖形成軸對(duì)稱,這條直線叫做對(duì)稱軸。折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),也叫做對(duì)稱點(diǎn)。

【軸對(duì)稱指的是兩個(gè)圖形的位置關(guān)系,兩個(gè)圖形沿著某條直線對(duì)折后能夠完全重合.成軸對(duì)稱的兩個(gè)圖形一定全等!

2.軸對(duì)稱圖形的定義

把一個(gè)圖形沿著某直線折疊,如果直線兩旁的部分能互相重合,那么這個(gè)圖形是軸對(duì)稱圖形,這條直線就是對(duì)稱軸。

【軸對(duì)稱圖形是指一個(gè)圖形,圖形被對(duì)稱軸分成的兩部分能夠互相重合.一個(gè)軸對(duì)稱圖形的對(duì)稱軸不一定只有一條,也可能有兩條或多條,因圖形而定!

3.軸對(duì)稱與軸對(duì)稱圖形的區(qū)別與聯(lián)系

軸對(duì)稱與軸對(duì)稱圖形的主要區(qū)別:軸對(duì)稱是指兩個(gè)圖形,而軸對(duì)稱圖形是一個(gè)圖形;軸對(duì)稱圖形和軸對(duì)稱的關(guān)系非常密切,若把成軸對(duì)稱的兩個(gè)圖形看作一個(gè)整體,則這個(gè)整體就是軸對(duì)稱圖形;反過來,若把軸對(duì)稱圖形的對(duì)稱軸兩旁的部分看作兩個(gè)圖形,則這兩個(gè)圖形關(guān)于這條直線(原對(duì)稱軸)對(duì)稱.。

4.軸對(duì)稱的性質(zhì)

軸對(duì)稱的性質(zhì):成軸對(duì)稱的兩個(gè)圖形中,對(duì)應(yīng)點(diǎn)的連線被對(duì)稱軸垂直平分;成軸對(duì)稱的兩個(gè)圖形的任何對(duì)應(yīng)部分也成軸對(duì)稱;成軸對(duì)稱的兩個(gè)圖形全等。

5.線段的軸對(duì)稱性

①線段是軸對(duì)稱圖形,線段的垂直平分線是它的對(duì)稱軸。

②線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)到線段兩端的距離相等。

③線段垂直平分線的性質(zhì)定理的逆定理:到線段兩個(gè)端距離相等的點(diǎn)在線段的垂直平分線上。

【①線段的垂直平分線,畫出到線段兩個(gè)端點(diǎn)的距離,這樣就出現(xiàn)相等線段,直接或間接地為構(gòu)造全等三角形創(chuàng)造條件。②三角形三邊垂直平分線交于一點(diǎn),該點(diǎn)到三角形三頂點(diǎn)的距離相等,這點(diǎn)是三角形外接圓的圓心——外心。】

6.線段的垂直平分線

垂直并且平分一條線段的直線,叫做這條線段的垂直平分線,也叫線段的中垂線。

7.角的軸對(duì)稱性

(1)角是軸對(duì)稱圖形,角的平分線所在的直線是它的對(duì)稱軸。

(2)角平分線上的點(diǎn)到角兩邊的距離相等。

(3)角的內(nèi)部到角兩邊距離相等的點(diǎn)在角的平分線上。

【①用符號(hào)語言表示角平分線上的點(diǎn)到角兩邊的距離相等。若CD平分∠ADB,點(diǎn)P是CD上一點(diǎn),且PE⊥AD于點(diǎn)E,PF⊥BD于點(diǎn)F,則PE=PF】

【②用符號(hào)語言表示角的內(nèi)部到角兩邊距離相等的點(diǎn)在角的平分線上。若PE⊥AD于點(diǎn)E,PF⊥BD于點(diǎn)F,PE=PF,則PD平分∠ADB 】

8.角平分線的畫法

角平分線的尺規(guī)作圖

 

·真題解析

考點(diǎn)1 判別軸對(duì)稱圖形

例1

(2013年咸寧)下列學(xué)習(xí)用具中,不是軸對(duì)稱圖形的是(  )

分析

:根據(jù)軸對(duì)稱圖形的概念:把一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合的圖形是軸對(duì)稱圖形,對(duì)各選項(xiàng)逐一判斷即可。

解:

選項(xiàng)A、B、D是軸對(duì)稱圖形,選項(xiàng)C不是軸對(duì)稱圖形,故選C。

考點(diǎn)2 線段的垂直平分線的性質(zhì)

例2

(2013年泰州)如圖1,在△ABC中,AB+AC=6 cm,BC的垂直平分線l與AC相交于點(diǎn)D,則△ABD的周長(zhǎng)為  cm.

分析:

根據(jù)線段垂直平分線的性質(zhì),可得DC=DB,進(jìn)而可確定△ABD的周長(zhǎng)。

解:

因?yàn)閘垂直平分BC,所以DB=DC

所以△ABD的周長(zhǎng)=AB+AD+BD=AB+AD+DC=AB+AC=6 cm.故填6。

考點(diǎn)3 畫軸對(duì)稱圖形

例3

(2013年哈爾濱)如圖2所示,在每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度的方格紙中,有線段AB和直線MN,點(diǎn)A,B,M,N均在小正方形的頂點(diǎn)上,在方格紙中畫四邊形ABCD(四邊形的各頂點(diǎn)均在小正方形的頂點(diǎn)上),使四邊形ABCD是以直線MN為對(duì)稱軸的軸對(duì)稱圖形,點(diǎn)A的對(duì)稱點(diǎn)為點(diǎn)D,點(diǎn)B的對(duì)稱點(diǎn)為點(diǎn)C。

分析:

過點(diǎn)A畫直線MN的垂線,垂足為O,在垂線上截取OD=OA,D就是A關(guān)于直線MN的對(duì)稱點(diǎn);同理,畫出點(diǎn)B關(guān)于直線MN的對(duì)稱點(diǎn)C;連接BC,CD,DA,即可得到四邊形ABCD。

解:

正確畫圖如圖3所示。

例4

(2013年重慶)作圖題:(不要求寫作法)如圖4所示,△ABC在平面直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為A(-2,1),B(-4,5),C(-5,2)。

⑴作△ABC關(guān)于直線l:x=-1對(duì)稱的△A1B1C1,其中,點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別為A1,B1,C1;

⑵寫出點(diǎn)A1,B1,C1的坐標(biāo)。

分析:

⑴根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A,B,C關(guān)于直線l的對(duì)稱點(diǎn)A1,B1,C1,然后順次連接即可;⑵直接根據(jù)平面直角坐標(biāo)系寫出點(diǎn)A1,B1,C1的坐標(biāo)。

解:

⑴畫△A1B1C1如圖5所示。

⑵A1(0,1)、B1(2,5)、C1(3,2)。

考點(diǎn)4 關(guān)于x軸或y軸對(duì)稱的點(diǎn)的坐標(biāo)

例5

(2013年遂寧)將點(diǎn)A(3,2)沿x軸向左平移4個(gè)單位長(zhǎng)度得到點(diǎn)A′,點(diǎn)A′關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是(  )

A.(-3,2) B.(-1,2) C.(1,2) D.(-1,-2)

分析:

先利用平移中點(diǎn)的變化規(guī)律求出點(diǎn)A′的坐標(biāo),再根據(jù)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)特征即可求解。

解:

因?yàn)閷Ⅻc(diǎn)A(3,2)沿x軸向左平移4個(gè)單位長(zhǎng)度得到點(diǎn)A′,所以點(diǎn)A′的坐標(biāo)為(-1,2)。所以點(diǎn)A′關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是(1,2),故選C。

考點(diǎn)5 等腰三角形的性質(zhì)

例6

(2013年臺(tái)灣)如圖6,在長(zhǎng)方形ABCD中,M為CD中點(diǎn),分別以B,M為圓心,BC,MC長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)P。若∠PBC=70°,則∠MPC的度數(shù)為(  )

A.20° B.35° C.40° D.55°

分析:

根據(jù)等腰三角形兩底角相等求出∠BCP,然后求出∠MCP,再根據(jù)“等邊對(duì)等角”求解即可.

解:

因?yàn)榉謩e以B,M為圓心,BC,MC長(zhǎng)為半徑的兩弧相交于點(diǎn)P,所以BP=BC,MP=MC。

因?yàn)?ang;PBC=70°,所以∠BCP=1/2(180°-∠PBC)=1/2(180°-70°)=55°

在長(zhǎng)方形ABCD中,∠BCD=90°,所以∠MCP=90°-∠BCP=90°-55°=35°

所以∠MPC=∠MCP=35°,故選B。

考點(diǎn)6 等邊三角形的性質(zhì)

例7

(2013年黔西南州)如圖8,已知△ABC是等邊三角形,點(diǎn)B,C,D,E在同一直線上,且CG=CD,DF=DE,則∠E的度數(shù)為

分析:

根據(jù)等邊三角形的性質(zhì),可知∠ACB=60°,根據(jù)等腰三角形底角相等即可得出∠E的度數(shù)。

解:

因?yàn)椤鰽BC是等邊三角形,所以∠ACB=60°,∠ACD=120°

因?yàn)镃G=CD,所以∠CDG=30°,∠FDE=150°

因?yàn)镈F=DE,所以∠E=15°,故填15°

考點(diǎn)7含300角的直角三角形的性質(zhì)

例8

(2013年泰安)如圖9,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交AC于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F,若∠F=30°,DE=1,則BE的長(zhǎng)是

分析:

根據(jù)題意推得∠DBE=30°,則在Rt△DBE中由“30°角所對(duì)的直角邊是斜邊的一半”即可求得線段BE的長(zhǎng)度。

解:

因?yàn)镕D⊥AB,所以∠ACB=∠FDB=90°

因?yàn)?ang;F=30°,所以∠A=∠F=30°

又DE垂直平分線AB,所以∠EBA=∠A=30°

因?yàn)镈E=1,所以BE=2DE=2,故填2。

 

·誤區(qū)點(diǎn)撥

誤區(qū)1 軸對(duì)稱含義理解不清致錯(cuò)

例1

如圖1中的(1)、(2)兩個(gè)圖形成軸對(duì)稱,請(qǐng)畫出它們的對(duì)稱軸。

錯(cuò)解:

如圖1所示的直線MN

剖析:

沿直線MN對(duì)折,在直線MN兩旁的圖形的確可以互相重合,但這里要求的是畫(1)、(2)的對(duì)稱軸,而MN并不是這兩個(gè)圖形的對(duì)稱軸。畫成軸對(duì)稱的兩個(gè)圖形的對(duì)稱軸時(shí)要注意所指的是哪個(gè)兩個(gè)圖形,特別注意當(dāng)這兩個(gè)圖形本身也是軸對(duì)稱圖形時(shí),不要把各自圖形的對(duì)稱軸作為兩個(gè)圖形的對(duì)稱軸。

正解:

如圖1所示的直線PQ

誤區(qū)2

例2

如圖2,已知A,C兩點(diǎn)關(guān)于BD對(duì)稱,下列結(jié)論:①OA=OC;②OB=OD;③AD=CD;④AB=CB。其中正確的有 (填序號(hào)即可).

錯(cuò)解:

填①②③④.

剖析:

錯(cuò)解“A,C兩點(diǎn)關(guān)于BD對(duì)稱”錯(cuò)誤理解為“AC,BD互相垂直平分”,實(shí)際上OA=OC,AB=CB,AD=CD成立,但OB=OD不一定成立。

正解:

填①③④.

     編輯推薦:

      2023年中考各科目重點(diǎn)知識(shí)匯總

  最新中考資訊、中考政策、考前準(zhǔn)備、中考預(yù)測(cè)、錄取分?jǐn)?shù)線等
 
  中考時(shí)間線的全部重要節(jié)點(diǎn)
 
  盡在"中考網(wǎng)"微信公眾號(hào)    

   歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點(diǎn)擊查看

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:www_gaokao_com

  • 歡迎微信掃碼
    關(guān)注初三學(xué)習(xí)社
    中考網(wǎng)官方服務(wù)號(hào)

熱點(diǎn)專題

  • 2024年全國各省市中考作文題目匯總
  • 2024中考真題答案專題
  • 2024中考查分時(shí)間專題

[2024中考]2024中考分?jǐn)?shù)線專題

[2024中考]2024中考逐夢(mèng)前行 未來可期!

中考報(bào)考

中考報(bào)名時(shí)間

中考查分時(shí)間

中考志愿填報(bào)

各省分?jǐn)?shù)線

中考體育考試

中考中招考試

中考備考

中考答題技巧

中考考前心理

中考考前飲食

中考家長(zhǎng)必讀

中考提分策略

重點(diǎn)高中

北京重點(diǎn)中學(xué)

上海重點(diǎn)中學(xué)

廣州重點(diǎn)中學(xué)

深圳重點(diǎn)中學(xué)

天津重點(diǎn)中學(xué)

成都重點(diǎn)中學(xué)

試題資料

中考?jí)狠S題

中考模擬題

各科練習(xí)題

單元測(cè)試題

初中期中試題

初中期末試題

中考大事記

北京中考大事記

天津中考大事記

重慶中考大事記

西安中考大事記

沈陽中考大事記

濟(jì)南中考大事記

知識(shí)點(diǎn)

初中數(shù)學(xué)知識(shí)點(diǎn)

初中物理知識(shí)點(diǎn)

初中化學(xué)知識(shí)點(diǎn)

初中英語知識(shí)點(diǎn)

初中語文知識(shí)點(diǎn)

中考滿分作文

初中資源

初中語文

初中數(shù)學(xué)

初中英語

初中物理

初中化學(xué)

中學(xué)百科