三、函數(shù)
易錯點1:各個待定系數(shù)表示的的意義。
易錯點2:熟練掌握各種函數(shù)解析式的求法,有幾個的待定系數(shù)就要幾個點值。
易錯點3:利用圖像求不等式的解集和方程(組)的解,利用圖像性質(zhì)確定增減性。
易錯點4:兩個變量利用函數(shù)模型解實際問題,注意區(qū)別方程、函數(shù)、不等式模型解決不等領域的問題。
易錯點5:利用函數(shù)圖象進行分類(平行四邊形、相似、直角三角形、等腰三角形)以及分類的求解方法。
易錯點6:與坐標軸交點坐標一定要會求。面積最大值的求解方法,距離之和的最小值的求解方法,距離之差最大值的求解方法。
易錯點7:數(shù)形結合思想方法的運用,還應注意結合圖像性質(zhì)解題。函數(shù)圖象與圖形結合學會從復雜圖形分解為簡單圖形的方法,圖形為圖像提供數(shù)據(jù)或者圖像為圖形提供數(shù)據(jù)。
易錯點8:自變量的取值范圍有:二次根式的被開方數(shù)是非負數(shù),分式的分母不為0,0指數(shù)底數(shù)不為0,其它都是全體實數(shù)。
四、三角形
易錯點1:三角形的概念以及三角形的角平分線,中線,高線的特征與區(qū)別。
易錯點2:三角形三邊之間的不等關系,注意其中的“任何兩邊”。最短距離的方法。
易錯點3:三角形的內(nèi)角和,三角形的分類與三角形內(nèi)外角性質(zhì),特別關注外角性質(zhì)中的“不相鄰”。
易錯點4:全等形,全等三角形及其性質(zhì),三角形全等判定。著重學會論證三角形全等,三角形相似與全等的綜合運用以及線段相等是全等的特征,線段的倍分是相似的特征以及相似與三角函數(shù)的結合。邊邊角兩個三角形不一定全等。
易錯點5:兩個角相等和平行經(jīng)常是相似的基本構成要素,以及相似三角形對應高之比等于相似比,對應線段成比例,面積之比等于相似比的平方。
易錯點6:等腰(等邊)三角形的定義以及等腰(等邊)三角形的判定與性質(zhì),運用等腰(等邊)三角形的判定與性質(zhì)解決有關計算與證明問題,這里需注意分類討論思想的滲入。
易錯點7:運用勾股定理及其逆定理計算線段的長,證明線段的數(shù)量關系,解決與面積有關的問題以及簡單的實際問題。
易錯點8:將直角三角形,平面直角坐標系,函數(shù),開放性問題,探索性問題結合在一起綜合運用探究各種解題方法。
易錯點9:中點,中線,中位線,一半定理的歸納以及各自的性質(zhì)。
易錯點10:直角三角形判定方法:三角形面積的確定與底上的高(特別是鈍角三角形)。
易錯點11:三角函數(shù)的定義中對應線段的比經(jīng)常出錯以及特殊角的三角函數(shù)值。
新初三快掃碼關注
中考網(wǎng)微信公眾號
每日推送學習技巧,學科知識點
助你迎接2020年中考!
歡迎使用手機、平板等移動設備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看